ارائهی روشی پویا برای پیشبینی مکانی-زمانی آلودگی هوای شهر تهران بر مبنای ماشین بردار پشتیبان
نویسندگان
چکیده مقاله:
با توجه به آثار سوء آلودگی هوا بر سلامت انسانها و محیط، پیشبینی و مدلسازی این پدیده از جمله مسائل مهم در چند دههی گذشته بوده است. دینامیک غیرخطی و حجم بالای دادههای آلودگی هوا، مشکلات پیشبینی این پدیدهی پیچیده را، بویژه در پردازشهای پویا، دوچندان کرده است. هدف این پژوهش، ارائهی الگوریتمی برخط است که بتواند با حل مشکلات روشهای پیشین در پیشبینی برخط آلودگی هوا، سری زمانی آلودگی هوای شهر تهران را به صورت پویا پیشبینی کند. الگوریتم برخط ارائه شده بر مبنای ماشین بردار پشتیبان طراحی شده است. در الگوریتم ارائه شده، پیشبینی مبتنی بر دادههای جریانی جمعآوری شده توسط سنجندههای آلودگی هوا، سنجندههای هواشناسی و همچنین دادههای مکانی همچون ترافیک، ارتفاع متوسط منطقه و ویژگیهای سطح زمین انجام میشود. نتایج حاصل شده بیانگر دقت مناسب الگوریتم برخط، جهت پیشبینی پویای آلودگی هوای شهر تهران میباشد. استفاده از دادههای یک سال جهت انجام تست، دقت 0.71 و خطای جذر میانگین مربعات 0.54 و ضریب تعیین 0.81 را حاصل کرده است. افزون بر دقت مناسب، سرعت بالای پردازشها در الگوریتم برخط، کارایی این الگوریتم را برای طراحی سیستمی آنلاین جهت پیشبینی آلودگی هوای شهر تهران برای چند ساعت آینده به اثبات میرساند.
منابع مشابه
ارائه ی روشی پویا برای پیش بینی مکانی-زمانی آلودگی هوای شهر تهران بر مبنای ماشین بردار پشتیبان
با توجه به آثار سوء آلودگی هوا بر سلامت انسان ها و محیط، پیش بینی و مدلسازی این پدیده از جمله مسائل مهم در چند دهه ی گذشته بوده است. دینامیک غیر خطی و حجم بالای داده های آلودگی هوا، مشکلات پیش بینی این پدیده ی پیچیده را، بویژه در پردازش های پویا، دوچندان کرده است. هدف این پژوهش، ارائه ی الگوریتمی برخط است که بتواند با حل مشکلات روش های پیشین در پیش بینی برخط آلودگی هوا، سری زمانی آلودگی هوای شه...
متن کاملارایه مدلی مناسب با استفاده از ماشین بردار پشتیبان برای پیشبینی غلظت روزانه مونوکسیدکربن در هوای شهر تهران
Backgrounds and Objectives: Precise air pollutants prediction, as the first step in facing air pollution problem, could provide helpful information for authorities in order to have appropriate actions toward this challenge. Regarding the importance of carbon monoxide (CO) in Tehran atmosphere, this study aims to introduce a suitable model for predicting this pollutant. Materials and Method: W...
متن کاملارایه مدلی مناسب با استفاده از ماشین بردار پشتیبان برای پیشبینی غلظت روزانه مونوکسیدکربن در هوای شهر تهران
زمینه و هدف: پیشبینی دقیق آلاینده های هوا، به عنوان اولین گام جهت برخورد مناسب با مشکل آلودگی هوا، میتواند اطلاعات مفیدی را برای برنامه ریزی جهت مقابله با این موضوع در اختیار مدیران ذیر بط قرار دهد. در این مقاله با توجه به معضل آلاینده مونوکسیدکربن (co) در هوای شهر تهران، اقدام به ارایه مدلی مناسب برای پیشبینی این آلاینده شده است. روش بررسی: برای این منظور از اطلاعات آلایندههای هوا و پارامتره...
متن کاملارزیابی مدل ترکیبی موجک – حداقل مربعات ماشین بردار پشتیبان در ریزمقیاس کردن مکانی - زمانی سری های زمانی بارش
با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک – حداقل مربعات ماشین بردا...
متن کاملروشی جدید برای بهبود کلاسبندی اهداف هوایی راداری توسط کرنلهای مختلف ماشین بردار پشتیبان
امروزه مبحث کلاسبندی اهداف هوایی اهمیت روزافزونی یافته است و روشهای مختلفی برای رسیدن به این هدف مورد استفاده قرار می-گیرد. ماشین بردار پشتیبان از جمله جدیدترین روشهای مورد استفاده در این حوزه میباشد. در این مقاله برای کلاسبندی سه هدف جنگنده، هواپیمای مسافربری و هلیکوپتر از سه روش کلاسبندی چند کلاسه ماشین بردار پشتیبان شامل روش یکی در برابر یکی، یکی در برابر همه و گراف غیرچرخشی جهتدار پ...
متن کاملپیشبینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی
هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (PCA) بر عملکرد مدل ماشین بردار پشتیبان (SVM) برای پیشبینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل SVM، دبی جریان ماهانه پیشبینی شد. سپس با استفاده از PCA تعداد متغیرهای ورودی به مدل SVM از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 4
صفحات 43- 63
تاریخ انتشار 2016-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023